Configurations and measurement ranges Table of measurement ranges Measuring ranges / Full scale value (F.S.) 100 Vol.% 50 Vol.% 30 Vol.% 20 Vol.% 10 Vol.% 5,000 2,000 1,000 500 300 10 100 50 ppm ppm ppm ppm ppm ppm ppm CO₂ CO N₂O CH₄ C_nH_m CF₄ SF₆ ~ ~ H₂O Measurement ranges on request 03 CL₂ H₂S ~ ~ ~ SO₂ NO₂ NO Infrared module NDIR Ultraviolet module NDUV Ultraviolet module NDUV / UVRAS

Table of Detection Limits

Infrared module NDIR Ultraviolet module NDUV Ultraviolet module NDUV / UVRAS* Calibration with Propane

Definition of Detection Limit. The Detection Limit is the smallest measurement value which can be obtained with a specific uncertainty. This uncertainty includes the resolution, noise, and stability of the gas sensor for a specific gas and specific measurement range. For evaluation of the detection limit value, several single measurements are taken at the identical measurement conditions. With the obtained single measurement results the standard deviation

"Sigma" (σ) is calculated. The values given in the table equal the triple amount of Sigma.

List of standard measurement ranges *1 (and detection limits *2)

					Stand	ard Measu	iring Range	es with resp	pective Dete	ection Limi	ts (% of F.S	5. * ³)				
	100	50	30	20	10	5	1	5,000	2,000	1,000	500	300	100	50	10	1
	Vol.%	Vol.%	Vol.%	Vol.%	Vol.%	Vol.%	Vol.%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppr
CO ₂	(< 0.1%)	(< 0.1%)		(< 0.1%)	(< 0.1%)	(< 0.1%)	(< 0.1%)	(< 0.1%)	(< 0.1%)	(< 0.1%)	(< 0.1%)	~	(< 0.3%)	(< 0.3%)		
со	< 0.2%)	(< 0.2%)	(< 0.2%)		(< 0.2%)	< 0.2%)	(< 0.2%)	(< 0.2%)	(< 0.3%)	(< 0.5%)	(< 0.5%)					
N ₂ O	(< 0.1%)	(< 0.1%)	(< 0.1%)	~	~			~	< 0.1%)	< 0.1%)	(< 0.1%)	< 0.1%)	(< 0.3%)			
C _n H _m	(< 0.1%)	(< 0.1%)	(< 0.1%)	~	(< 0.2%)	(< 0.2%)	(< 0.2%)	(< 0.2%)	< 0.5%)	(< 0.5%)						
CH ₄	(< 0.1%)	(< 0.1%)	(< 0.1%)	~	(< 0.1%)	(< 0.1%)	< 0.1%)	(< 0.1%)	(< 0.3%)	(< 0.5%)						
CF ₄	(< 0.2%)	(< 0.2%)	(< 0.2%)					< 0.02%)	(< 0.05%)							
SF ₆	(< 0.1%)	(< 0.1%)	(< 0.1%)					(< 0.2%)	~	(< 0.5%)			(< 0.3%)	(< 0.3%)		
H₂O						~	~	~								
O ₃								(< 0.1%)	< 0.1%)	(< 0.1%)	(< 0.2%)		(< 0.5%)	(< 0.5%)	(< 0.5%)	~
CL ₂	~		(< 0.1%)	~	(< 0.1%)	(< 0.1%)	(< 0.1%)	< 0.1%)	< 0.1%)	< 0.1%)	(< 0.2%)	~	< 0.5%)			
SO ₂					(< 0.1%)	(< 0.1%)	(< 0.1%)	(< 0.1%)	< 0.1%)	(< 0.1%)	(< 0.1%)	(< 0.1%)	(< 0.5%)	(< 0.5%)	(< 0.5%)	
H ₂ S							(< 0.1%)	(< 0.1%)	< 0.1%)	< 0.1%)	(< 0.2%)	~	< 0.5%)			
NO ₂								(< 0.1%)	(< 0.1%)	(< 0.1%)	(< 0.2%)	< 0.2%)	< 0.5%)	(< 0.5%)	(< 0.5%)	
NO								(< 0.1%)	(< 0.1%)	(< 0.1%)	~	(< 0.2%)				

^{*1} A standard measurement range is defined by ✓ / *2 (= 3 σ) in Percent of Full Scale / *3 F.S. = Full Scale / *4 Calibration with Propane Infrared module NDIR Ultraviolet module NDUV

Available arrangements

Arrangement		Sensor 1 (*)	Sensor 2 (*)	Sensor 3 (*)	Options / Addiotional s		
MultiG as mono 1 Sensor + options	1.1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			O ₂	Р	Н
	1.2	O_3 CL_2 H_2S SO_2 NO_2			O ₂	Р	н
MultiG as duo 2 Sensors + options	2.1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		O ₂	Р	Н
	2.2	$ \boxed{ O_3 \left[CL_2 \right] \left[H_2 S \right] \left[SO_2 \right] \left[NO_2 \right] } $	O_3 CL_2 SO_2 NO_2		O ₂	Р	Н
	2.3	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	O_3 CL_2 SO_2 NO_2		O ₂	Р	Н
MultiG as trio 3 Sensors + options	3.1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	O ₂	Р	Н
	3.2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	O_3 CL_2 SO_2 NO_2	O_3 CL_2 SO_2 NO_2	O ₂	Р	Н
	3.3	SO ₂	NO ₂	NO	O ₂	Р	н

^(*) Only one gas selectable per sensor
(**) P = pressure, H = humidity